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We use particle-resolved direct numerical simulation (PR-DNS) as a model-free
physics-based numerical approach to validate particle acceleration modelling in
gas-solid suspensions. To isolate the effect of the particle acceleration model, we
focus on point-particle direct numerical simulation (PP-DNS) of a collision-free
dilute suspension with solid-phase volume fraction φ = 0.001 in a decaying isotropic
turbulent particle-laden flow. The particle diameter dp in the suspension is chosen to
be the same as the initial Kolmogorov length scale η0 (dp/η0= 1) in order to overlap
with the regime where PP-DNS is valid. We assess the point-particle acceleration
model for two different particle Stokes numbers, Stη = 1 and 100. For the high
Stokes number case, the Stokes drag model for particle acceleration under-predicts
the true particle acceleration. In addition, second moment quantities which play key
roles in the physical evolution of the gas–solid suspension are not correctly captured.
Considering finite Reynolds number corrections to the acceleration model improves
the prediction of the particle acceleration probability density function and second
moment statistics of the point-particle model compared with the particle-resolved
simulation. We also find that accounting for the undisturbed fluid velocity in the
acceleration model can be of greater importance than using the most appropriate
acceleration model for a given physical problem.
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1. Introduction
Turbulent flows containing solid particles are commonly found in nature. For

example, the transport of air pollutants, volcanic ash and sandstorms occurring in
atmospheric turbulence can significantly affect our daily lives. On the other hand,
turbulent gas–solid flows are frequently encountered in industrial applications such
as fluidized-bed combustion, fluid catalytic cracking, coal gasification and biomass
energy generation (Fan, Marchisio & Fox 2004). Prediction of such systems requires
understanding of the respective dynamics of the carrier and dispersed phases as well
as how these dynamics couple.
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While the underlying dynamics of gas–solid flows is determined by the coupling
of the dispersed and carrier phases, from a modelling perspective, it is often easier
to neglect various degrees of physical coupling between the particles and the fluid as
well as among the particles themselves. In zero-way coupling, particles are effectively
massless and move as fluid tracers. In one-way coupling, particles have finite mass
and experience a drag force owing to the surrounding fluid. However, the mass loading
of particles is very small, such that the fluid is essentially unaware of the dispersed
phase’s presence. In contrast, in two-way coupled flows, the mass loading of particles
is significant enough to cause measurable turbulence modification. In this regime, the
fluid experiences an equal and opposite drag force owing to the presence of each
dispersed phase element. Finally, in four-way coupled flows, the mean free path of
particles is small enough, or the bulk volume fraction is large enough, for collisions to
become important. For clarity, it should be noted that the notion of an ‘n-way coupled’
system is purely a ‘modelling’ simplification and to call a system one-way coupled,
(where particles experience drag and the fluid feels nothing), for instance, is to say
the physical system in question is expected to have little non-dimensional momentum
or energy coupling. In reality, the correct ‘physical’ description of every particle-laden
fluid is four-way coupled.

A popular numerical approach for gas–solid systems with particles smaller than the
Kolmogorov length scale is the point-particle direct numerical simulation (PP-DNS)
methodology. In this method, particles are tracked in a Lagrangian frame, whereas the
continuum fluid phase is represented in a fixed Eulerian frame. Some of the seminal
papers using point-particle methods include studies on particle dispersion (Riley &
Patterson 1974; Squires & Eaton 1991a; Elghobashi & Truesdell 1992; Truesdell
& Elghobashi 1994), particle-particle collision (Sundaram & Collins 1997; Reade &
Collins 2000), settling (Wang & Maxey 1993; Frankel et al. 2016), and turbulence
modification (Squires & Eaton 1990, 1991b; Elghobashi & Truesdell 1993; Boivin,
Simonin & Squires 1998; Sundaram & Collins 1999; Ferrante & Elghobashi 2003). In
PP-DNS, the grid spacing is chosen to resolve the unladen Kolmogorov length scale
η. If the mass loading of the system is large enough, particles carry an additional
representation as point sources of momentum in the fluid phase represented by a force
applied at the particle centre. The force felt by the fluid is equal in magnitude and
opposite in direction to the force felt by a given particle. The point-particle approach
has a sound theoretical basis in the limit where the particle diameter dp is small
compared with the Kolmogorov length scale η. However, lack of validation of the
point-particle method makes it unclear what happens as the particle size approaches
and exceeds the Kolmogorov scale. This is one motivation for the present study.

Because the flow is not resolved at the scale of the particles in the point-particle
method (due to small dp with respect to η) an appropriate particle acceleration model
is needed to represent the integrated hydrodynamic stress on each particle. Perhaps
the earliest work is owing to Stokes (1850) who found that under the assumption
of low Reynolds number, the drag force a particle experiences as it moves in an
otherwise quiescent flow is proportional to the particle’s velocity. Building on work
by Stokes (1850), Boussinesq (1885) and Basset (1888) formulated the particle
drag force in unsteady flows. Faxén (1922) developed a generalization of the drag
force for non-uniform flows. Corrsin & Lumley (1956) incorporated the known
hydrodynamic interactions into a particle equation of motion. Maxey & Riley (1983)
and Gatignol (1983) proposed a general particle equation of motion which includes a
complete description of forces on a particle. The Maxey–Riley–Gatignol (MRG)
equation is valid for a rigid particle moving at low particle Reynolds number,
(Rep = dp|ũ( f )

−V|/ν( f )
� 1 with ũ( f ) being the undisturbed fluid velocity at the

particle centre, V being the particle velocity and ν( f ) being the fluid-phase kinematic
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viscosity), in a Newtonian fluid away from solid boundaries and takes into account
viscous (Stokes) drag, Faxén corrections, added mass, fluid acceleration, buoyancy
and history forces. Here dp is the particle diameter, ũ( f ) is the undisturbed fluid
velocity at the particle location, V is the particle velocity, and ν( f ) is the kinematic
viscosity of the fluid. Extensions of the viscous drag to higher Reynolds numbers via
the Schiller–Naumann correlation (Clift, Grace & Weber 1978), and the history term
(Lovalenti & Brady 1993) have been developed, as well as extensions to compressible
flows (Parmar, Haselbacher & Balachandar 2012).

Although the first-order effect of a particle acceleration model is to ensure accurate
prediction of particle trajectories due to hydrodynamic forces, the model’s role in
modifying fluid turbulence statistics cannot be neglected. Particle acceleration plays
a key contribution to the interphase turbulent kinetic energy (TKE) transfer arising
from interphase interactions (Tenneti et al. 2010; Mehrabadi et al. 2015). Tenneti,
Mehrabadi & Subramaniam (2016) and Mehrabadi & Subramaniam (2017) have
showed that interphase TKE transfer is responsible for the transfer of TKE between
the fluid and the solid particles resembling the role of the turbulence production term
in the context of single-phase flow (Pope 2000). This term is of great importance
in modulation of turbulent flow by a dispersed particle phase. Subramaniam et al.
(2014) studied decaying isotropic particle-laden turbulent flows and showed that while
the fluid kinetic energy prediction from PP-DNS is very close to that of PR-DNS,
the interphase TKE transfer and the fluid dissipation were significantly different.
It was argued that the deficiency was due to the use of an inappropriate particle
acceleration model for their choice of parameters. As we will demonstrate in this
paper, the choice of acceleration model plays an important role in accurate prediction
of interphase energy transfer, though other factors including model implementation
also play important roles. Notwithstanding, Schneiders, Meinke & Schroder (2016)
have incorporated inertial effects into point-particle models as a means for comparing
with turbulent flow statistics predicted by particle-resolved simulations.

While there has been extensive work on the development of particle acceleration
models, these models are necessarily incomplete. Under the most general
circumstances, there is no way to express the integrated fluid stress on the surface of
a particle solely in terms of a finite number of undisturbed fluid quantities. Still, the
value of these equations of motion, despite the fact that their origins rest in simplified
problems, is that they may nevertheless provide utility in more complicated flows.
Therefore, it is worth assessing the validity of present particle acceleration models to
determine their accuracy in predicting turbulence modulation and particle statistics.

Experimental efforts are reliable sources to validate particle acceleration models.
However, limited optical access into fluidized beds limits the applicability of
experimental investigations to either dilute suspensions (Lee & Durst 1982; Rogers
& Eaton 1991; Sato, Hishida & Maeda 1996; Oakley, Loth & Adrian 1997; Kiger &
Pan 2000) or pseudo two-dimensional experimental settings (Goldschmidt et al.
2003; Bokkers, Annaland & Kuipers 2004). Particle-resolved direct numerical
simulation (PR-DNS) has emerged as a powerful tool to study turbulent particle-laden
suspensions (Balachandar & Eaton 2010; Tenneti & Subramaniam 2014) and hone
point-particle models (Tenneti, Garg & Subramaniam 2011). In PR-DNS, no coupling
force is assumed. Rather, the fluid structures are resolved at all scales and the particles
move owing to the integrated fluid stress on their boundary. PR-DNS has been used
to study the interaction of a single particle with decaying (Bagchi & Balachandar
2003; Burton & Eaton 2005) and stationary (Naso & Prosperetti 2010) isotropic
turbulence. PR-DNS has also been employed to study the effect of a collection of
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particles on homogeneous isotropic turbulence (Cate et al. 2004; Zhang & Prosperetti
2005; Lucci, Ferrante & Elghobashi 2011; Gao, Li & Wang 2013; Wang et al.
2014; Chouippe & Uhlmann 2015), particle-laden turbulent channel flow (Uhlmann
2008; Kidanemariam et al. 2013) as well as gas–solid flow with upstream turbulence
(Xu & Subramaniam 2010). In addition, Homann & Bec (2010) have compared
particle acceleration variance of neutrally buoyant particles in forced turbulence using
PR-DNS and PP-DNS. In the aforementioned studies, the particle diameter is larger
than the Kolmogorov length scale, and particle-to-fluid density ratio is of the order
of 1. Recently, Subramaniam et al. (2014) and Schneiders et al. (2016) have been
able to perform PR-DNS of Kolmogorov-size particles to analyse modulation of the
turbulent flow.

In the current study, we focus on an assumed form of particle acceleration/drag
model commonly used in PP-DNS, and use PR-DNS to validate its capability in
representing hydrodynamic acceleration in homogeneous decaying isotropic turbulence.
We use PR-DNS in a regime that is believed to be applicable to the PP-DNS approach,
while retaining the computational feasibility of the PR-DNS. These considerations
leave us with a particle-laden flow with particle diameters being equal to the
Kolmogorov length scale (dp = η), and the turbulent Reynolds number based on
the Taylor microscale being Reλ = 27. Note that the former meets the upper limit
of the PP-DNS applicability, while the latter is due to the significant computational
demand required for PR-DNS of small particles in a turbulent flow.

Now assuming that the drag model has been chosen and validated, the point-particle
algorithm requires careful numerical implementation. One implementation challenge
is that particles may exist anywhere in space, while fluid variables are updated at
grid points. Calculation of the force therefore requires interpolation of fluid properties
to the particle location, and, in the case of two- and four-way coupling, projection of
the drag force back to the fluid. Efforts by Yeung & Pope (1988) and Balachandar
& Maxey (1989) solved the zero and one-way coupled interpolation problem. They
found that particle trajectories could be accurately tracked by using a sufficiently
high-order interpolation scheme to interpolate the local fluid variables (velocity) to
the particle position. For two-way (and four-way) coupled problems, the drag force at
the particle position must be projected back to the Eulerian grid. For particles obeying
Stokes drag (evaluated using the disturbed fluid velocity), Sundaram & Collins (1996)
showed that the total energy equation for the particles and fluid would only be
numerically consistent if the weights used for interpolation of fluid quantities to the
particle position were the same as the weights used to project information from the
particles back to the fluid.

Another challenge in two-way coupled problems is the drag force dependence
on undisturbed fluid quantities; for example, Stokes drag depends on the difference
between the undisturbed fluid velocity evaluated at the particle position and the
particle’s velocity. However, in two-way coupled simulations, the fluid velocity field
near each particle is contaminated by that particle’s own disturbance flow. Some
recent efforts to estimate the undisturbed fluid velocity have been proposed (Gualtieri
et al. 2015; Horwitz & Mani 2016; Ireland & Desjardins 2017). The Gualtieri et al.
(2015) and Ireland & Desjardins (2017) studies are based on analytical solutions
developed for a regularized point force and are exact in the limit of large filter
width compared to particle size, while the Horwitz & Mani (2016) study is based
on empirical numerical tests and also takes into account the numerical discretization.
Each method shows similar accuracy with regard to predicting the settling velocity of
an isolated particle under laminar conditions. In this study, we will use the method
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presented in Horwitz & Mani (2016) and its extension to higher particle Reynolds
numbers (Horwitz & Mani 2018).

Having identified the aforementioned challenges, the motivation of the present study
is to explore the question, can a point-particle simulation reproduce the statistics of
a particle-resolved simulation of the same non-dimensional problem? To answer this
question, we perform simulations of a monodisperse particle configuration in decaying
isotropic turbulence. Particles are seeded with the local fluid velocity and the system
evolves in time. With the same nominal initial condition, we explore how the statistics
of the particle-resolved simulations compare with those obtained from point-particle
simulations. Point-particle simulations both accounting and not accounting for the
undisturbed fluid velocity in the particle acceleration model are considered. We
perform our analysis for two particle Stokes numbers Stη = 1 and Stη = 100. The
goal is to assess the validity of particle acceleration models used in gas–solid flow
simulations. We also highlight the importance of numerical implementation on model
predictions. The rest of the paper is organized as follows: In § 2, we present the
kinetic energy equation for a homogeneous monodisperse particle-laden suspension
and discuss the impact of the acceleration model on modifying the energy exchange
process between particles and fluid. In § 3 we present the numerical methodology
for the particle-resolved and point-particle approaches. Results obtained using both
approaches are directly compared in § 4 and discussed in § 5, while concluding
remarks are provided in § 6.

2. Implication of gas–particle drag model on higher-order statistics
In gas–solid suspensions, the two phases are coupled through interphase interactions.

In this regard, the drag force plays a fundamental role in interphase momentum
transfer, but it also directly contributes to the interphase turbulent kinetic energy
transfer which determines the level of gas-phase and solid-phase velocity fluctuations.

The solid-phase kinetic energy can be partitioned into translational and rotational
components. The rotational energy transfer occurs through hydrodynamic interactions
when particles experience a local velocity gradient at a length scale comparable to the
particle diameter, or through collisions between non-spherical or non-smooth particles.
The particles in this study are spherical and smooth so that the tangential component
of the collision force is neglected. Low particle collision frequency, consistent
with low solid-phase volume fraction (φ = 0.001), means that the momentum and
energy transfer due to particle collisions is negligible. We may therefore estimate
the magnitude of the translational to rotational kinetic energy purely based on
hydrodynamics. Particles will be initialized with the local fluid velocity with no
rotation. Therefore, the particle translational velocity scales as the root mean square
(r.m.s.) fluid velocity u′. The particle size being equal to the initial Kolmogorov
scale and manner of seeding together suggest that particles would not be able to
develop a rotation rate Ω larger than O(τ−1

η ), where τη is the Kolmogorov time. The
respective translational and rotational kinetic energies will scale as k(p)

trans ∼ (1/2)mpu′2

and k(p)
rot ∼ (1/2)Iτ−2

η , where I = (2/5)mp(dp/2)2 is the moment of inertia for a solid
sphere. Since the particle size is equal to the initial Kolmogorov scale η0, using
uη0 = η0/τη0 and the initial values for the Kolmogorov and r.m.s. fluid velocity,
the ratio of particle rotational to translational kinetic energy may be estimated
as k(p)

rot /k
(p)
trans = (2/5)(dp/2)2|ΩiΩi|/|vivi| ∼ (1/10)(uη0)

2/u′20 = O(10−2). This scaling
analysis indicates that the translational kinetic energy of the particles will be dominant,
and therefore we neglect the rotational kinetic energy from the remainder of the
analysis.
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In this study we are interested in examining the implication of particle acceleration
and its numerical implementation on the kinetic energy of fluctuating velocities in
the fluid phase k( f ) and the solid phase k(p) as well as the viscous dissipation ε( f ).
Therefore, in this section we briefly review the equations governing the TKE in each
phase.

2.1. Kinetic energy equations
In the context of multiphase flow, the conservation equations are derived from
statistical approaches. One such statistical procedure used in gas–solid flow is the
random field (RF) approach (Pai & Subramaniam 2009; Tenneti & Subramaniam
2014; Mehrabadi & Subramaniam 2017). In this approach the transport equations of
mass, momentum and energy are multiplied by a phasic indicator function I(β) with
β ∈ ( f , p) which is 1 in phase β and 0 otherwise. Here, ( f ) and (p) denote the fluid
and particle phases, respectively. The equations are then ensemble averaged over all
possible realizations in the event space. If the system is statistically homogeneous
and ergodic, then ensemble averaging and volume averaging are equivalent. Therefore,
the mean value of property Q in phase β is given by

〈Q(β)
〉 =
〈I(β)Q〉
〈I(β)〉

=

∫
I(β)Q dV∫
I(β) dV

, (2.1)

and subsequently the fluctuating component is defined as Q′(β)=Q−〈Q(β)
〉. It is worth

mentioning that in the above equation the denominator represents the volume fraction
of phase β.

Accordingly, the level of kinetic energy in phase β is defined as k(β)=〈u′(β) ·u′(β)〉/2
with the velocity fluctuation being u′(β) = u(β) − 〈u(β)〉 (in the present study, 〈u(β)〉
is zero). The evolution equations of gas-phase and solid-phase kinetic energy for a
homogeneous gas–solid suspension are, respectively, given by (Pai & Subramaniam
2009; Subramaniam et al. 2014; Mehrabadi et al. 2015)

ρ( f )(1− φ)
dk( f )

dt
=Π ( f )

− ε( f ), (2.2)

ρ(p)φ
dk(p)

dt
=Π (p). (2.3)

In the above equations, it is assumed that the rotational energy of particles is
negligible compared to the translational kinetic energies. Also, the particles are
assumed to be elastic, so that collisions make no net contribution to energy exchanges.
In the above equations, ρ( f ) and ρ(p) are the gas-phase and solid-phase mass densities,
φ is the solid-phase volume fraction, and ε( f )

= 2µ( f )
〈I( f )sijsij〉 (s being the strain-rate

tensor) is the viscous dissipation (Subramaniam et al. 2014; Mehrabadi et al. 2015).
In addition, Π ( f ) and Π (p) are respectively the fluid-phase and solid-phase interphase
TKE transfer terms. It has been shown (Xu & Subramaniam 2007; Mehrabadi et al.
2015; Mehrabadi & Subramaniam 2017) that the interphase TKE transfer terms,
arising from the velocity fluctuation–drag force covariance, play key roles in transfer
of the kinetic energy due to interphase interactions. By definition, these transfer terms
have the following forms:

Π ( f )
=−〈u( f )

· f 〉, (2.4)
Π (p)
= 〈u(p)

· f 〉, (2.5)
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where f = −σ · ∇I(p) is the interfacial force per unit volume, and σ is the fluid
stress tensor. It is worth mentioning that the gradient of the indicator function can
be rewritten as −n(p)δ(x − x(I)) (Drew & Passman 1998), where n(p) is the normal
vector at each particle surface, and δ(x − x(I)) is a generalized delta function which
is non-zero only at the fluid–solid interface. The alternative form of the drag force
f = σ · n(p)δ(x− x(I)) is particularly useful since the computed drag force (integral of
the fluid stress over the particle surface) in PR-DNS is reconcilable with this definition.
In addition, it has been shown that this definition in conjunction with the kinematic
condition at the interface leads to the conservation of the interphase TKE transfer
principle which states that, for the case of zero mean-slip velocity, the interphase
transfer terms are equal in magnitude and opposite in sign, i.e. Π ( f )

+Π (p)
= 0 (Xu &

Subramaniam 2007; Mehrabadi et al. 2015; Mehrabadi & Subramaniam 2017). This
implies that the rate of energy lost by one phase owing to interphase interactions at
mutual fluid–solid interfaces is equal in magnitude to the rate of energy gained by the
other phase. As a result, the mixture kinetic energy e(m) defined as ρ( f )(1− φ)k( f )

+

ρ(p)φk(p), which is the mass-weighted kinetic energy in the system governed by:

de(m)

dt
=Π ( f )

+Π (p)
− ε( f ), (2.6)

simplifies to
de(m)

dt
=−ε( f ). (2.7)

Therefore, the mixture energy decays monotonically due to the viscous dissipation
in the absence of any driving force. This equation is also reconcilable with the
PR-DNS formulation in which the drag force on each particle surface is directly
recovered. Nevertheless, this conservation principle is violated by PP-DNS (or any
other numerical approach) in which a particle drag model is used in place of direct
enforcement of no-slip and no-penetration boundary conditions at particle surfaces.

2.2. Point-particle model kinetic energy equations
In the PP-DNS implementation, the drag force on particle i, i.e. Fi,pp is provided by
an assumed drag model. To project this drag force to the Eulerian grid, the following
expression is used:

f pp =
1

Vcell

Np∑
i=1

Fi,ppP(δ(Xi − x)). (2.8)

In the above equation, the subscript pp denotes point-particle quantities. In addition,
the operator P(δ(Xi− x)) is the numerical projection operator that is non-zero on the
grid points of the corresponding Eulerian cell with the cell volume Vcell. Considering
the above definition for the point-particle drag force, the evolution equations for
implied fluid-phase and solid-phase velocity fluctuations are (Sundaram & Collins
1999; Subramaniam et al. 2014)

ρ( f )(1− φ)
dk( f )

pp

dt
=Π ( f )

pp − ε
( f )
pp , (2.9)

ρ(p)φ
dk(p)

pp

dt
=Π (p)

pp . (2.10)
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In (2.9), −ε( f )
pp ≡ (1 − φ)(1/V)

∫
µ( f )u( f )

∇
2u( f ) dV , and the integration is over the

whole fluid volume V . Using the modelled drag force in (2.8), the implied interphase
TKE transfer terms in the PP-DNS formulation now have the following forms:

Π ( f )
pp = (1− φ)

1
V

Np∑
i=1

u( f )(Xi) ·Fi,pp, (2.11)

Π (p)
pp =

1
V

Np∑
i=1

Vi ·Fi,pp. (2.12)

In (2.11) and (2.12), u( f )(Xi) represents the fluid velocity at the ith particle location,
and Vi is the particle velocity. The mixture energy for point particles, e(m)pp = ρ

( f )(1−
φ)k( f )

pp + ρ
(p)φk(p)

pp , can then be expressed as:

de(m)pp

dt
=Π ( f )

pp +Π
(p)
pp − ε

( f )
pp . (2.13)

The summation of the interphase TKE transfer terms in the above equations reveals
that

Π ( f )
pp +Π

(p)
pp =

1
V

Np∑
i=1

(Vi − u( f )(Xi)) ·Fi,pp +O(φ2). (2.14)

In (2.14), the additional term which is O(φ2) (see appendix A) is an error consistent
with the neglect of volume fraction in the point-particle equations. The kinematic
constraint of zero relative velocity at particle surfaces which is enforced by the
PR-DNS method, does not hold for the PP-DNS method, i.e. Vi − u( f )(Xi) 6= 0. As
a result, the summation of Π ( f )

pp and Π (p)
pp in (2.14) is non-zero which means that

the conservation of interphase TKE transfer principle does not hold. In the PP-DNS
formulation, equation (2.14) is interpreted as an additional dissipation near particle
surfaces, and is denoted as ε∗pp (Sundaram & Collins 1999; Xu & Subramaniam 2007).
The additional dissipation can be interpreted as the model-form dissipation arising
from the fact that not all of the true fluid dissipation is resolved by the term, ε( f )

pp .
Therefore, the use of a particle acceleration model for fluid–solid interactions in the
PP-DNS approach leads to a different form of the mixture energy equation, that is

de(m)

dt
=−ε∗pp − ε

( f )
pp , (2.15)

which is now governed by the under-resolved viscous dissipation ε( f )
pp and a model for

the additional dissipation near particle surfaces ε∗pp.
The formulations for the TKE equations presented here show that no direct

comparison is possible between viscous dissipation obtained from PR-DNS and
PP-DNS approaches (cf. equations (2.7) and (2.15)) unless the effect of the additional
dissipation near particle surfaces ε∗pp is accounted for (Sundaram & Collins 1996,
1999; Subramaniam et al. 2014; Horwitz & Mani 2016). In this study it is of interest
to investigate the effect of the gas–particle drag force in the PP-DNS approach on the
implied statistics of turbulence when compared with those of the PR-DNS. Further
details of the point-particle energetics derivation can be found in appendix A.
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3. Numerical methods
We perform PR-DNS and PP-DNS of decaying isotropic turbulent particle-laden

flow. The simulations are carried out using two codes which facilitate appropriate
implementations for PR-DNS and PP-DNS approaches. Details of these approaches
are given in this section.

3.1. Particle-resolved direct numerical simulation
PR–DNS of freely evolving gas–solid suspensions are performed using the particle-
resolved uncontaminated-fluid reconcilable immersed boundary method (PUReIBM)
that has been developed to simulate flow past fixed particle assemblies (Garg et al.
2011; Tenneti et al. 2013; Mehrabadi et al. 2015; Sun, Tenneti & Subramaniam 2015;
Mehrabadi, Murphy & Subramaniam 2016a; Sun et al. 2016) and freely evolving
suspensions (Tenneti et al. 2016; Mehrabadi, Tenneti & Subramaniam 2016b). In
PUReIBM, the entire physical domain is discretized using a uniform Cartesian grid
and the governing equations of fluid flow are solved on all the grid points (including
those lying inside the particles). The governing equations that are solved in PUReIBM
are the continuity equation

∇ · u= 0, (3.1)

and the Navier–Stokes equations

ρ( f ) ∂u
∂t
+ ρ( f )

∇ · (uu)=−∇p+µ( f )
∇

2u+ f IB, (3.2)

where u and p are respectively the instantaneous velocity and pressure fields. The
third term on the right-hand side of (3.2) is the immersed boundary (IB) force
f IB that accounts for the presence of solid particles by enforcing the no-slip and
no-penetration boundary conditions at the surface of the particles. Complete details of
the computation of the IB force can be found in the work of Tenneti et al. (2011). The
surface of the spherical particle is represented by a discrete number of Lagrangian
points called boundary points that are parametrized in spherical coordinates. Two
additional sets of points, termed as exterior and interior points are generated by
projecting the boundary points onto spheres of radii r +1r and r −1r respectively,
with 1r chosen to be equal to the grid spacing. In PUReIBM, the IB force is
computed only at the interior points so that a desired velocity u(d,k) is obtained at
the kth interior point with respect to the nth time step. Following the direct forcing
method proposed by Mohd-Yusof (1996) the IB force f (k)IB at the kth interior point is
computed as:

f (k)IB = ρ
( f )u

(k,d)
− u(k,n)

1t
+ ρ( f )

∇ · (uu)(k,n) +∇p(k,n) −µ( f )
∇

2u(k,n). (3.3)

The desired velocity u(k,d) depends on the velocity of the particle. For instance, for
a fixed particle the desired velocity at the interior point is equal in magnitude but
opposite in direction of the fluid velocity at the corresponding exterior point so that
the velocity at the boundary point is zero. The IB force computed at all the interior
points is distributed among the neighbouring Cartesian grid nodes, but limited only to
those grid points in solid particles.

It has been shown by Tenneti et al. (2011) that volume-averaged equations in
a periodic domain can be reconciled with the ensemble-averaged equations of
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statistically homogeneous gas–solid suspensions. Hence the governing equations (3.1)
and (3.2) are solved numerically in a cubic domain with periodic boundaries, since
the primary goal is to simulate statistically homogeneous suspensions. Similar to DNS
of single-phase turbulence, it is simpler to solve for appropriately defined fluctuating
variables. The velocity field is decomposed into a spatially uniform mean flow 〈u〉V(t)
and a fluctuating velocity field u′(x, t), i.e.

u(x, t)= 〈u〉V(t)+ u′(x, t), (3.4)

where the volumetric mean velocity is obtained by averaging the velocity field
over the entire computational domain. Similar decompositions are written for the
convective term, the pressure gradient ∇p and IB force f . It should be noted that
the mean values of the velocity, pressure gradient and immersed boundary forcing
are zero in an isotropic turbulent flow. Substituting the above decompositions in (3.1)
and (3.2), followed by averaging over the entire computational domain yields the
volume-averaged mass and momentum conservation equations (detailed equations
are given by Tenneti et al. (2011)). Evolution equations for the fluctuating variables
are derived by subtracting the volume-averaged equations from their instantaneous
counterparts. The resulting equations for the fluctuating variables are solved using
a pseudo-spectral method, with the Crank–Nicolson scheme for the viscous terms,
and an Adams–Bashforth scheme for the convective terms. A fractional time-stepping
method based on the work of Kim & Moin (1985) is used to advance the fluctuating
velocity fields in time.

In freely evolving gas–solid suspensions, the particles move under the influence of
hydrodynamic and collisional forces. In PUReIBM, the particles are represented in
a Lagrangian frame of reference. The position and translational velocity of the ith
particle at time t are denoted by Xi(t) and Vi(t) respectively, and they evolve in
time as:

dXi(t)
dt
=Vi(t), (3.5)

mp
dVi(t)

dt
=Fi(t)+

Np∑
j=1
j6=i

Cij(t), (3.6)

where mp= ρpπd3
p/6 is the particle mass, and Np is the total number of particles used

in the simulation. Here Fi is the hydrodynamic force calculated from the velocity
and pressure fields at the particle surface. Also Cij is the contact force on the ith
particle as a result of collision with the jth particle, and is treated using a soft-sphere
model originally proposed by Cundall & Strack (1979). For the present study, the
collisions are modelled as elastic. Nevertheless, since the suspension is very dilute
in the cases studied here, particle collisions are infrequent. Some more discussion on
collision frequency and the effect of collisions on point-particle results is presented in
appendix B.

3.2. Point-particle direct numerical simulation
The point-particle algorithm is based on the code originally developed by Pouransari,
Mortazavi & Mani (2015). The fluid-phase governing equations are the Navier–Stokes
equations, (equations (3.1) and (3.2)) but written in conservative form. However, the
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immersed boundary force f IB in (3.2) is replaced by the negative of the gas–particle
drag evaluated on the Eulerian grid by (2.8), that is

− f IB ≡ f pp =
1

Vcell

Np∑
i=1

Fi,ppP(δ(Xi − x)). (3.7)

In addition, the particles are tracked in a Lagrangian frame using the same Newtonian
laws of motion given in (3.5) and (3.6). The Navier–Stokes equations are solved on a
staggered grid using second-order finite differences. The resulting Poisson equation for
pressure is solved directly using the fast Fourier transform. Time advancement of both
fluid and particle equations is accomplished by explicit fourth-order Runge–Kutta.

To complete the point-particle algorithm, it is necessary to specify the projection
operator P (·), and drag force Fi,pp. The particles explored in this study will have
a size equal to the initial Kolmogorov scale of the fluid, that is dp/η0 = 1. From a
scaling perspective, this particle size ratio is borderline in terms of the need to model
unsteady effects in the particle equation of motion (Ling, Parmar & Balachandar 2013).
As we will show, some of these unsteady effects can be alleviated by seeding the
particles with the local fluid velocity rather than at rest, as was done in Subramaniam
et al. (2014). Faxén corrections are ignored for two reasons. Faxén corrections are
important when particles are large enough to see the curvature in the underlying fluid
velocity field. Their importance can be shown to scale with the ratio of the particle
size to Taylor microscale (dp/λ)

2 (Calzavarini et al. 2009), which is much smaller
than unity for the present problem. However, it is also important to assess whether the
curvature induced by the disturbance fields of neighbour particles will be important.
Since the volume fraction in this study is relatively low (10−3), the contribution to
the Faxén correction owing to disturbance flows created by neighbour particles is
small, which provides an additional reason to neglect Faxén corrections. Collisions
are also neglected in the point-particle simulation owing to diluteness. In this study
we only consider steady drag (Stokes, and Reynolds corrected) and neglect history,
added mass, and fluid acceleration forces, to assess whether the simplest version of
a point-particle method can find some agreement with a particle-resolved simulation,
in the limit where the point-particle method is believed to be valid dp/η 6 1. Our
goal with this study is validation of the point-particle method, so we were not a
priori resigned to only use steady drag. Rather we sought to add levels of complexity
until statistics from the two approaches agreed within acceptable tolerance. What we
will show in the results section, is that an appropriate numerical implementation of
steady drag was found to yield good agreement between the two methods, for this
particular non-dimensional problem. It is not a universal statement that the drag forces
we consider here, and their numerical implementation, will be sufficient for validation
problems in other regimes. In this study we consider Stokes (linear) drag, and Schiller–
Naumann (nonlinear). Their formulas are:

FSt
i = 3πµ( f )dp(ũ( f )

i −Vi), (3.8)

FSN
i = 3πµ( f )dp(ũ( f )

i −Vi) (1+ 0.15× Rep
0.687), (3.9)

with the particle Reynolds number being defined as

Rep =
dpρ

( f )
|ũ( f )

i −Vi|

µ( f )
. (3.10)

Note that in the above formulation, ũ( f )
i is the undisturbed fluid velocity at the ith

particle location, the importance of which is discussed in the following section.
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3.3. Consistent numerical implementation of the interphase momentum transfer
The drag formulas in (3.8) and (3.9) depend on the difference between the undisturbed
fluid velocity ũ( f )

i evaluated at the particle location, and the particle’s velocity. The
undisturbed fluid velocity is the fluid velocity the particle would see in the absence
of that particle. This means the undisturbed fluid velocity evaluated at particle j
contains a contribution owing to the summation of velocity disturbances created
by all other particles i 6= j, but not the disturbance created by particle j. This is a
modelling problem because the undisturbed fluid velocity is not readily accessible in
the simulation. Usually the fluid velocity interpolated from the surrounding fluid grid
points to the particle location is assumed to be approximately equal to the undisturbed
fluid velocity. However, when the particle size relative to the grid spacing Λ=dp/dx is
significant, then the fluid velocity interpolated to particle j will contain a significant
contribution owing to the disturbance velocity field created by particle j. In other
words, if this issue is left untreated, this particle will see its own disturbance field,
and the drag force which will be used to update its position (and couple momentum
and energy to the fluid) will be incorrectly calculated.

This observation was recognized by Horwitz & Mani (2016) who developed a
procedure to estimate the undisturbed fluid velocity given a measured disturbed
fluid velocity at the location of the particle. The idea is that the undisturbed fluid
velocity as used in the above drag formulas for the jth particle should not include
the disturbance created by that particle, but may contain the disturbance information
from the other particles. The procedure attempts to remove the self-disturbance portion
from the measured disturbed fluid velocity which thereby provides an estimate for
the undisturbed fluid velocity seen by that particle. The estimation procedure from
that work is:

ũ( f )
p = u( f )

p +Cp dx2
∇

2u( f )
p . (3.11)

The subscript p in (3.11) denotes quantities evaluated at the location of the particle.
Here, Cp is an O(1) correction coefficient reported by Horwitz & Mani (2016) and
∇

2u( f )
p is the Laplacian of the fluid velocity interpolated to the particle position.

Essentially, this correction estimates the undisturbed fluid velocity by adding to
the measured fluid velocity at the location of the particle, u( f )

p , an estimate for
the disturbance created by the particle. The estimate is the Laplacian term. Such a
correction is expected to work well provided that the curvature introduced into the
fluid velocity field by the particle velocity disturbance is large compared with the
underlying curvature already present in the flow. The Laplacian can be decomposed
as

∇
2u( f )

p ≈∇
2uP

p +∇
2uF

p , (3.12)

where ∇2uP
p is the curvature in the fluid velocity created by the particle velocity

disturbance and ∇2uF
p is the underlying curvature in the fluid velocity field in

the absence of the disturbance flow. Horwitz & Mani (2016) have shown that the
disturbance velocity scales as the characteristic fluid velocity and scales with the
particle size relative to the grid Λ, so that |Cp dx2

∇
2uP

p | ≈Λu′, where u′ here is the
r.m.s. velocity of the turbulence. The ensemble average magnitude of the curvature
in the fluid velocity field, in the absence of the particle may be estimated as:
|∇

2uF
p | ∼ u′/λ2, where λ is the Taylor microscale. Therefore, we estimate the ratio of

the inherent curvature in the flow to that produced by a point particle as:

|Cp dx2
∇

2uF
p |/|Cp dx2

∇
2uP

p | ∼
Cp dx2u′/λ2

Λu′
∼

d2
p

λ2
� 1. (3.13)
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In (3.13) we have made use of the fact that Cp=O(1), and for the present study Λ=1.
The particle size being equal to the initial Kolmogorov scale (dp= η0) means that the
ratio in (3.13) is much less than unity (d2

p/λ
2
0 ≈ 10−2 for the present cases). In other

words, the curvature created by the particles owing to their disturbance fields will
be much larger than the inherent curvature in the fluid velocity field. An attempt to
estimate the undisturbed fluid velocity using a curvature-based procedure is therefore
non-dimensionally justified for this problem. Though we have used scaling analyses
above to justify the employed correction procedure for the undisturbed fluid velocity
(Horwitz & Mani 2016), we have tested the sensitivity of this scheme in a variety of
laminar (Horwitz & Mani 2016, 2018), and turbulent environments (Horwitz & Mani
2015, 2018), and have found the results to be fairly insensitive to non-dimensional
particle size or Stokes number. Though not specifically tested in the context of finite
Reynolds number corrections to steady drag, we expect the procedures developed by
Gualtieri et al. (2015) and Ireland & Desjardins (2017) based on analytical solutions
would also be applicable in the present configuration since the near field of the
regularized point-force solution should vary slowly with Reynolds number (Batchelor
1967). Nevertheless the analytical-based methods developed by Gualtieri et al. (2015)
and Ireland & Desjardins (2017) rely on sufficiently large filter widths to remove
errors associated with discretization of the Gaussian kernel, while the procedure
developed in Horwitz & Mani (2016) was developed specifically taking into account
the effect of discretization.

The procedure outlined above is formally accurate in the limit of small volume
fraction and Reynolds number, and high Stokes number. It was found that the above
formula (3.11), with no modifications works well for order-unity Reynolds number
in the Schiller–Naumann equation (Horwitz & Mani 2018), the error being of the
same order as that which is present in the Schiller–Naumann correlation. In addition,
this correction scheme was found to perform reasonably well over a range of Stokes
numbers covering the range explored in this study. Therefore, the previous studies
demonstrated this correction procedure is verifiable. For simple model problems, our
previous work (Horwitz & Mani 2016) suggests that particles will follow the correct
trajectories and dissipate the correct rate of mechanical energy implied by those
force models. In the next section we explore the validation question: can a verifiable
numerical implementation of a drag model for point particles, which is valid for
the non-dimensional parameters encountered in the present problem, reproduce the
particle and fluid statistics implied by the PR-DNS?

Lastly, to complete the point-particle algorithm, it is necessary to specify the
projection operator. The correction scheme developed by Horwitz & Mani (2016) to
estimate the undisturbed fluid velocity is consistent with projecting the calculated
drag force to the Eulerian grid using trilinear weights. For comparison, we will also
perform the point-particle simulations assuming the disturbed fluid velocity is equal
to the undisturbed fluid velocity (no correction). For these simulations, we will use
trilinear weights both for interpolation of the fluid velocity to the particle location and
for projection of the drag force back to the fluid grid. Trilinear interpolation/projection
is chosen because it was found to be more accurate for two-way coupled problems
than higher-order interpolation (Horwitz & Mani 2016; Horwitz et al. 2016).

Before presenting the results, it is worth comparing the implied point-particle
dissipation term with the form presented in Sundaram & Collins (1996). As noted by
Sundaram & Collins (1996), when Stokes drag (3.8) is assumed for the point-force
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model, the sum of the inter-phase energy exchange takes a quadratic form viz:

Π ( f )
pp +Π

(p)
pp = ρ

(p)φ

{
(V − u( f )

p ) · (ũ
( f )
p −V)

τp

}
Np

. (3.14)

In (3.14), {·}Np denotes an average over all particles. The first slip velocity appearing
in (3.14), (V − u( f )

p ), accounts for the difference between the particle and fluid
velocity at the location of the particle while the second slip velocity, (ũ( f )

p − V),
involves the undisturbed fluid velocity arising due to the assumption of the Stokes
drag model. Note that in the limit where the particle size to grid spacing is much
smaller than unity Λ� 1, then the undisturbed fluid velocity ũ( f )

p evaluated at the
particle location is approximately equal to the disturbed fluid velocity u( f )

p which
would be found by interpolating to the particle location from the surrounding grid
points. In this limit, equation (3.14) is a quadratic form in the continuous sense, but
the discrete version of this source term will only be numerically consistent if the
operator used for interpolating the gas velocity to the particle has the same weights
as those used to project the resulting force back to the fluid grid (Sundaram &
Collins 1996). Since this observation, symmetric interpolation–projection has become
common practice in the literature. However, if the undisturbed fluid velocity is taken
into account, as has been argued elsewhere (Horwitz & Mani 2016, 2018; Horwitz
et al. 2016), the symmetry in the quadratic form disappears, so that there is no
longer a reason to assume the same weights for interpolation as projection. Rather,
in the authors’ opinion, it is best to compute the assumed force model as accurately
as possible (which requires a good estimate of the undisturbed fluid velocity), and
to then explore the consequences of that procedure. In other words, how good is
the agreement between the point-particle statistics where a drag model is assumed
(but computed accurately), and a particle-resolved simulation, where no force model
is assumed? This is the question we explore in the next section. We conclude this
section by noting that the additional particle dissipation term for an arbitrary force
(acceleration) model will take the form:

Π ( f )
pp +Π

(p)
pp = ρ

(p)φ{(V − u( f )
p ) ·Amodel}Np . (3.15)

4. Simulation set-up and results
In this section, we directly compare results obtained from particle-resolved and

point-particle simulation of decaying isotropic turbulence. In the following we justify
our choice of decaying isotropic turbulence as the canonical flow configuration, rather
than statistically stationary turbulent flow or homogeneously sheared particle-laden
flow. It is non-trivial to perform PR-DNS of a homogeneous turbulent particle-laden
flow where there is sustained inherent turbulence without artificially forcing the flow.
In particle-laden flows with finite computational domain sizes such artificial forcing
can contaminate the natural dynamics of the system. While in single-phase turbulence
one can force at the large scales and simulate the natural dynamics of the energy
cascade, current computational limitations do not permit the dynamic range needed to
access this range of scales using PR-DNS. Furthermore, inertial particles dynamically
interact with fluid eddies of a much larger scale and it is well established that the
presence of inertial particles modifies the fluid velocity spectra at large scales. In
contrast to unladen homogeneous shear flow where the fluid kinetic energy increases
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exponentially (Pope 2000), it may be possible to attain a statistically stationary
state with particles for certain values of particle Stokes number and mass loading.
However, it is not known at present how to systematically choose these parameters
to attain a stationary flow. In addition, the notion of turbulence modulation becomes
difficult to interpret when the unladen flow has unbounded energy in time. Therefore,
in this study, we focus on the influence of particle acceleration models on phasic
kinetic energies and viscous dissipation in the canonical setting of decaying isotropic
turbulence.

4.1. Grid resolution
Following the recipe of Pope (2000), the grid resolution requirement for PR-DNS can
be expressed as

N3
=

(
L
1x

)3

=

(
L

L11

L11

L
L
η

η

dp

dp

1x

)3

, (4.1)

where L is the domain size, and 1x is grid spacing. In addition, L11 and L are,
respectively, the turbulent integral and large-eddy length scales (Xu & Subramaniam
(2010) reported a similar expression for the grid resolution requirement). Assuming
that the length scale ratios L11/L and L/L11 are constant, equation (4.1) can
be simplified by exploiting the turbulence scaling expressions L/η = Re3/4

L and
Reλ =

√
20ReL/3 (Pope 2000), that is

N3
∼ Re9/2

λ

(
η

dp

)3 ( dp

1x

)3

. (4.2)

The above expression reveals that unlike single-phase turbulence, the grid resolution
requirement is strongly affected by the particle size and particle grid resolution.
The computational cost increases as dp/η decreases. In addition, the overall grid
resolution is proportional to the cube of the grid spacing across each particle dp/1x.
The immense computational demand imposed by the grid resolution requirement
limits applicability of the PR-DNS of Kolmogorov-size particles to low-to-moderate
Taylor microscale Reynolds numbers. Therefore, in the present study we choose
Reλ ≈ 27, dp/η = 1 and dp/1x = 12 for the PR-DNS. Based on these parameters,
we estimated the size of the domain to be L/dp = 96 which leads to N3

= 11523

grid points for the PR-DNS. For the PP-DNS, the same parameters are considered,
except that the grid spacing is 1x= η which gives rise to N3

= 963 grid points. It is
worth mentioning that κmaxη0 (κmax being the highest wavenumber in the domain) for
PR-DNS and PP-DNS are, respectively, 37.7 and 3.14. One last note concerns the
PR-DNS grid resolution per particle diameter dp/1x = 12, which has been verified
to be adequate as shown in appendix C. We also find this grid resolution to be
consistent with similar particle-resolved studies (Schneiders et al. 2016; Ozel et al.
2017).

4.2. Flow initialization
Owing to resolution requirements for the particle-resolved simulations, the initial
Reynolds number is relatively low, Reλ≈ 27. The initial condition for each simulation
is a divergence-free random field based on the method of (Rogallo 1981) whose
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energy spectrum obeys Pope’s model spectrum (Pope 2000). The energy spectrum
function has the following form:

E(κ)=Cε2/3κ−5/3fL(κL)fη(κη), (4.3)

where C is a model constant, κ is the wavenumber, ε is the dissipation and L and
η are large eddy and Kolmogorov length scales, respectively. The functions fL and fη
determine the shape of energy-containing and dissipative range of the energy spectrum
and have the form

fL(κL)=
(

κL
[(κL)2 + cL]

1/2

)5/3+p0

fη(κη)= exp{−β{[(κη)4 + c4
η]

1/4
− cη}}.

 (4.4)

The model constants p0 and β are the same as those suggested by Pope (2000), while
cL and cη are determined by the multi-variable Newton–Raphson method such that
the energy and dissipation rate from the spectrum matches those required for the
chosen Reλ with dp= η0. The different resolutions and grid configurations (collocated
for the particle-resolved and staggered for the point-particle algorithms) means the
respective simulations are using different initial conditions, which implies each initial
condition should be interpreted as different realizations of the same turbulence.
When the parameters in the model spectrum were chosen to match integral length
scales for the two initial conditions, both codes resulted in nearly identical evolution
of fluid kinetic energy and dissipation rate in unladen simulations. Based on the
aforementioned observations, we do not believe there is a sensitivity in the initial
conditions that can account for any differences in the results of the particle-laden
simulations. The particles are seeded randomly with uniform probability in the box
with the initial particle velocity taken as the local fluid velocity at the particle
location. The system is then allowed to evolve via fluid and particle equations. Since
the sample paths taken by each particle will be different between the two simulation
methodologies, the PR-DNS and PP-DNS studies will be said to be statistically
equivalent in a weak sense if moments of the particle and fluid distributions can be
matched between the two simulation approaches. The number of particles tracked
limits the sampling error. While the initial condition does not correspond to a physical
turbulent field, the skewness of the longitudinal velocity derivative reaches a physical
value of −0.5 within O(0.1) eddy turnover times so that all salient features in the
decay are physical.

In this study, we examine particles whose diameter is equal to the initial
Kolmogorov scale, dp/η0= 1. We also examine two Stokes numbers St0= 1 and St0=

100 where the particle Stokes number is defined as St0 = (1/18)(ρ(p)/ρ( f ))(dp/η0)
2.

These Stokes numbers are defined based on the initial Kolmogorov time scale. The
particle size is held constant between the simulations, so that the increase in Stokes
number is accomplished by increasing the particle to fluid density ratio from 18 to
1800 between the two simulation cases. The volume fraction is kept small (φ= 0.001)
to ensure particle–particle interactions are a second-order effect. With L/dp = 96 and
φ = 0.001, the total number of particles in the domain is:

Np = φ
6
π

〈
L
dp

〉3

= 1689. (4.5)

In addition, the two simulation cases correspond to two mass loading ratios, Φm =

(ρ(p)/ρ( f ))φ = 0.018 and 1.8.
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FIGURE 1. (Colour online) Comparison of (a) fluid kinetic energy, (b) fluid dissipation
rate and (c) particle kinetic energy versus time from the particle-resolved simulation with
different point-particle models for the case St0 = 1. The fluid dissipation rate for the
particle-resolved simulation, the right-hand side of (2.7), is compared against the sum of
all terms on the right-hand side of (2.13).

4.3. Fluid and particle statistics for St0 = 1
The evolution of the fluid energy, dissipation rate, and particle kinetic energy
are shown in figure 1. Two point-particle models have been employed; in each,
the particles are assumed to obey Stokes drag, however, one of the models
accounts for the undisturbed fluid velocity (St corrected) and the other does not
(St uncorrected). In comparing statistics, it is clear that both point-particle models are
in excellent agreement with the particle-resolved simulation. The agreement between
the point-particle simulations and the particle-resolved simulation with regard to
fluid energy and dissipation rate is not surprising given the low mass loading. This
means the particle–fluid system is effectively one-way coupled. More surprising
however is the agreement in particle kinetic energy predicted by the point-particle
models compared with the particle-resolved simulation. In the present study, since the
particles are initialized with the local fluid velocity, and because the Stokes number
is relatively small, the particles never acquire a significant enough slip velocity for
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finite Reynolds number corrections to steady drag to become important (as shall
be contrasted with the results presented in the next section). This observation also
explains why not accounting for the undisturbed fluid velocity has little effect on
prediction of particle kinetic energy; at this Stokes number, particles act as tracers
to large eddies which dominate contributions to the kinetic energy. This observation
also helps explain some of the results presented in Subramaniam et al. (2014) which
compared point particles and resolved particles at St0 = 1 in decaying isotropic
turbulence where the particles were initialized at rest. Though fluid energy was
matched well between the two simulation methodologies, the fluid dissipation rate
and particle kinetic energies showed disagreement. Therefore it seems the manner in
which particles are initialized plays an important role in determining whether inertial
and/or unsteady contributions to drag will be significant, as well as how these forces
ultimately correlate to other particle and fluid statistics.

4.4. Fluid and particle statistics for St0 = 100
In this section we explore a set-up which is of greater relevance to practical
gas–solid flows. Owing to the low mass loading for the St0 = 1 case, there was
small particle–turbulence interaction. In contrast, the present case exhibits significant
coupling between the dispersed and carrier phases. Here the mass loading is increased
by a factor of 100 to Φm= 1.8. This is accomplished by keeping the particle diameter
to initial Kolmogorov scale fixed at dp/η0 = 1 and increasing the density ratio to
ρ(p)/ρ( f )

= 1800.
Fluid kinetic energy and dissipation rate for the present case are shown in figure 2.

In contrast with the previous case (St0= 1), it is clear in the present case (St0= 100)
that significant turbulence modulation is experienced in the fluid. Here we are showing
a comparison of the particle-resolved simulation with four point-particle simulations;
two of the point-particle simulations employ Stokes drag, with the difference being
that one accounts for the undisturbed fluid velocity (St corrected) while the other
does not (St uncorrected). The two other point-particle simulations employ the
Schiller–Naumann Reynolds-number corrected steady drag formula; the difference in
the Schiller–Naumann implementations is again that in one procedure the undisturbed
fluid velocity is estimated (SN corrected), while in the other the disturbed fluid
velocity is used (SN uncorrected).

In the present case a clear difference is observed among the different point-particle
simulations compared with the particle-resolved simulation. The point-particle
simulations where the particles obey the Schiller–Naumann drag correlation whose
slip velocity is calculated as the difference between the undisturbed fluid velocity
and the particle velocity, show excellent agreement in both the fluid kinetic energy
and dissipation rate compared with the particle-resolved simulation. The greatest
discrepancy is seen between the particle-resolved simulation and the St uncorrected
simulation. Interestingly, the St corrected implementation shows better agreement with
the particle-resolved simulation than the SN uncorrected scheme. This is an interesting
observation which indicates that, at least for the present set-up, it is more important
to get the undisturbed fluid velocity right than to use the most applicable drag
correlation. Notwithstanding, accounting for both the undisturbed fluid velocity in the
drag correlation, and finite Reynolds number corrections to the drag formulation are
necessary for agreement between the particle-resolved and point-particle simulation.
Despite the particle size being borderline for the importance of unsteady effects
(Ling et al. 2013; Olivieri et al. 2014; Daitche 2015), good agreement between the
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FIGURE 2. (Colour online) Comparison of (a) fluid kinetic energy and (b) fluid dissipation
rate versus time from particle-resolved simulation with different point-particle models for
the case St0 = 100. The fluid dissipation rate for the particle-resolved simulation, the
right-hand side of (2.7), is compared against the sum of all terms on the right-hand side
of (2.13). Both figures share the same line legends.

point-particle and particle-resolved simulation is found without explicitly accounting
for these effects in the point-particle model. We have also conducted tests of particles
moving in simple flows using the analytical solutions provided by Coimbra & Rangel
(1998) and those results provide justification that the history term can be neglected
for the present case.
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FIGURE 3. (Colour online) Comparison of particle-resolved simulation against different
point-particle models for the case St0= 100, (a) particle kinetic energy, and (b) solid-phase
interphase kinetic energy transfer versus time.

tε( f )
0 /k( f )

0 0.54 2.70 4.87

PR-DNS 0.9303± 0.0339 0.5172± 0.0179 0.2855± 0.0099
SN corrected 0.9267± 0.0335 0.4732± 0.0162 0.2423± 0.0079
St corrected 0.9437± 0.0344 0.6071± 0.0218 0.3761± 0.0136
SN uncorrected 0.9488± 0.0345 0.6428± 0.0219 0.4363± 0.0142
St uncorrected 0.9546± 0.0348 0.6987± 0.0246 0.5045± 0.0174

TABLE 1. The 95 % confidence intervals on particle kinetic energy at different times for
PR-DNS and PP-DNS cases for St0 = 100. These quantities are normalized by the initial
fluid kinetic energy k( f )

0 .

The behaviour of the point-particle curves observed in figure 2 is also observed in
the particle kinetic energy and dissipation rate shown in figure 3. The SN corrected
point-particle scheme shows excellent agreement for particle kinetic energy compared
with the PR-DNS. As before, St corrected is more accurate than SN uncorrected, and
St uncorrected is the least accurate. To ensure the computation of k(p) is not subject to
substantial statistical variability due to the finite number of particles (Np = 1689) in
the computational domain, we have calculated 95 % confidence intervals on particle
kinetic energy at different times for PR-DNS and PP-DNS, as shown in table 1. The
low statistical variability for both PR-DNS and PP-DNS results provide confidence
that the observed differences in k(p), especially at later times when particles have lost
memory of their initial conditions, are primarily owing to the model form of drag and
its implementation rather than sampling error.

Given that the particle kinetic energy in the particle-resolved simulation and SN
corrected simulation are in good agreement, the source term that creates particle
kinetic energy, namely the covariance of particle velocity and acceleration (see
equations (2.5) and (2.12)), must also be in good agreement. Indeed, figure 3(b)
reveals excellent agreement between the SN corrected scheme and the particle-resolved
simulation. The SN corrected scheme predicts a slightly higher peak in particle
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0.54 2.70 4.87
tε( f )

0 /k( f )
0 |ap| σ|ap| |ap| σ|ap| |ap| σ|ap|

PR-DNS 0.052 0.031 0.044 0.021 0.030 0.013
SN corrected 0.058 0.038 0.049 0.024 0.031 0.014
St corrected 0.039 0.021 0.039 0.016 0.029 0.012
SN uncorrected 0.034 0.023 0.033 0.017 0.024 0.011
St uncorrected 0.028 0.016 0.028 0.013 0.022 0.010

TABLE 2. Mean (|ap|) and standard variation (σ|ap|) of the particle acceleration magnitude
at different times for the PR-DNS compared with the PP-DNS cases for St0= 100. These
quantities are normalized by the initial Kolmogorov velocity scale uη and time scale τη.

velocity–acceleration covariance. This is consistent with the particle kinetic energy
being slightly lower at late times for the SN corrected scheme compared with the
PR-DNS. The well ordering of the point-particle schemes is also found in the particle
kinetic energy source term, namely that St corrected is better than SN uncorrected.
The least accurate, as before, is the St uncorrected scheme which under-predicts the
peak particle velocity–acceleration covariance as seen in the PR-DNS by almost 50 %.

Thus far, we have demonstrated validation of the point-particle method via the SN
corrected implementation for Eulerian integral quantities (fluid kinetic energy and
dissipation rate) as well as Lagrangian integral quantities (particle kinetic energy and
dissipation rate). Finer appraisal of the accuracy of the point-particle schemes can
be studied by examining the distribution of particle acceleration events. Probability
density functions (PDFs) of particle acceleration for each of the schemes at three
times are shown in figure 4. The corresponding sample mean and standard deviation
of particle acceleration are presented in table 2. In examination of the PDF shapes and
their moments, the SN corrected particle acceleration PDFs are in good agreement
with the acceleration PDFs derived from the particle-resolved simulation at the
same non-dimensional times. It is clear that the particle acceleration PDF is skewed
towards higher accelerations in the particle-resolved simulation than any of the
point-particle methods except for SN corrected. The SN corrected scheme shows
good agreement in predicting the PDF mode and maximum particle acceleration,
although the SN corrected scheme slightly over-predicts the mean and standard
deviation of acceleration compared with the PR-DNS. Though the other point-particle
schemes have the correct qualitative shape, they considerably underestimate the
mean and standard deviation of acceleration as well as the maximum acceleration
compared with those predicted by the PR-DNS simulation. Again the same ordering
of the point-particle schemes is apparent, with St uncorrected showing the lowest
level of agreement with the PR-DNS, followed by SN uncorrected. The St corrected
scheme does a good job at predicting the location of the peak in the PR-DNS particle
acceleration PDF, however, the St corrected PDF falls off too quickly, underpredicting
the lower probability high acceleration events at early (tε( f )

0 /k( f )
0 = 0.54) and

intermediate (tε( f )
0 /k( f )

0 = 2.70) times.

5. Discussion
What is remarkable about these observations is that employing a drag correlation

(Schiller–Naumann) for isolated particles, which may be justified as predictive of the
mean drag in a dilute suspension, shows excellent agreement not only for second
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FIGURE 4. (Colour online) Particle acceleration PDFs at different times from particle-
resolved simulation compared with different point-particle models.

moments such as k( f ), k(p) and Π (p), but also in the distribution of particle acceleration
events. The former is itself a surprising and unanticipated result. In other words, we
find that point particles obeying a force model for an isolated sphere perform the
correct work rate on the fluid in a dilute suspension, in a regime where the force
model has empirical validity. The ability of the point-particle model to reproduce
the acceleration–velocity covariance with acceptable accuracy, which is necessary to
predict energetics, has to the best of the authors’ knowledge never been shown before
for a point-particle simulation.

What is more surprising however is that a force model for an isolated sphere can
faithfully reproduce with reasonable accuracy the correct distribution of acceleration
events as experienced by the dispersed phase in a dilute turbulent flow. Interpreted
another way, this means there may be some validity to closing surface-integrated
stress for a given particle in terms of quantities observed by that particle, namely
the undisturbed velocity and the particle velocity, even when the particle experiences
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nonlinear interactions with the fluid, and potentially other particles. Such a closure
is on sound theoretical grounds in the low Reynolds number limit when a particle
is isolated from others (Maxey & Riley 1983). It is not obvious that such a local
relationship is not only possible, but has predictive power in a scenario where scale
separation does not strictly exist: Rep = O(1), dp/η = O(1), and particles are close
enough to see each other’s disturbance flow (Stimson & Jeffrey 1926; Batchelor
1972; Batchelor & Green 1972). The latter point may be difficult to reconcile since
the Schiller–Naumann correlation is established for isolated spheres. Scale separation
or not, how could such a correlation for isolated spheres work in a system where
the particles are close enough to see each other’s disturbance flow? We discuss
some plausible explanations below. Firstly, because the particle Stokes number is
high, preferential concentration is relatively low, so that the bulk volume fraction
can be used to infer a representative mean-free distance between particles. The mean
inter-particle distance can be estimated using the Wigner–Seitz radius (Girifalco 2000),
as 8(rs/dp)

3
= φ−1, yielding rs= 5dp. Depending on the particle orientation, Stokesian

arguments (Stimson & Jeffrey 1926; Batchelor 1972) would predict a reduction in
the drag coefficient of the order of 10 % for a particle pair travelling at constant
speed at a fixed separation equal to the Wigner–Seitz radius of the present study.
The screening, at this distance, would not be considered a Faxén effect since the
two spheres would be outside the distance where the 1/r3 term of each other’s
Stokeslet can be felt. Instead, the screening would be interpreted as the first particle
obeying Stokes drag, with an undisturbed fluid velocity equal to the velocity of the
fluid at the location of the first particle in the absence of both particles, plus the
Stokeslet disturbance velocity created by the second particle at the location of the
first particle, as if the first particle were not present. The same arguments apply
for the undisturbed velocity at the location of the second particle. Koch (1990) has
presented related analysis when the system is made up of a suspension of particles. In
contrast, an isolated particle moving at a Reynolds number of unity in an otherwise
quiescent flow would experience an enhancement in drag by exactly 15 % based on
the Schiller–Naumann correlation as compared with Stokes’ formula.

In the present problem there is therefore an apparent competition between drag
enhancement due to fluid inertia and drag reduction due to particle–particle screening.
However, there are other physical effects to consider. Firstly, it is worth noting that
since the particle Reynolds numbers are sufficiently small in this study there should
be no recirculation region present in particle wakes. Specifically, measurements of
uniform flow over a sphere by Taneda (1956) suggest there is no recirculation region
present for particle Reynolds numbers less than approximately 24. However, even
in the presence of a turbulent flow, it is likely that fluctuations would be damped
inside the Oseen distance at least for the order-unity particle Reynolds numbers
encountered in this work. Secondly, the disturbance flows at finite Reynolds number
are asymmetric and steeper near the particle than at zero Reynolds number (Ganguli
& Lele 2017), a consequence of the minimum-energy dissipation theorem (Kim
& Karrila 2005). Thirdly, the present problem is dealing with multiple moving
particles so arguments based on two particles with a fixed separation are necessarily
incomplete. We can however gain some insight into the hydrodynamics of many
interacting particles by examining observations related to fixed arrays of spheres. Zick
& Homsy (1982) examined laminar Stokes flow past different periodic arrangement
of spheres. Their findings predict an enhancement of drag by approximately 21 %
for φ = 0.001 (the present case) with nominal differences based on the packing
arrangement. Tenneti et al. (2011) examined flow past random arrays of spheres for
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mean flow through Reynolds numbers in the range Rem ∈ [0.01, 300] and volume
fractions in the range φ ∈ [0.1, 0.5]. In that work, the initial velocity field is uniform,
but the flow exhibits ‘pseudo-turbulent’ fluctuations owing to the interaction of the
particle disturbance fields (Mehrabadi et al. 2015). Tenneti et al. (2011) propose
a correlation which extends volume fraction corrections to the Schiller–Naumann
correlation. The correlation takes the form

F(φ, Rem)=
FSN(Rem)

(1− φ)3
+

5.81φ
(1− φ)3

+
0.48φ1/3

(1− φ)4
+ φ3Rem

(
0.95+

0.61φ3

(1− φ)3

)
. (5.1)

Extrapolating this correlation to a volume fraction of 0.001 predicts a drag
enhancement of approximately 5 % (at Rem = O(1)), compared with an isolated
particle obeying the Schiller–Naumann correlation.

These observations lead us to the conclusion that the effects of screening are of
secondary importance in the drag correlation for this relatively dilute system and
the primary contribution to the drag is owing to steady drag experienced by an
isolated particle. Based on three scaling analyses (two isolated Stokesian particles,
an infinite periodic array of Stokesian particles, and an infinite non-periodic array
of finite Reynolds number particles) suggests the effects of screening are an order
of magnitude smaller in their contribution to the total drag a particle experiences,
compared with the contribution owing to the drag a particle would experience in
isolation. For the present case this gives us some justification why the effects of
screening – which were not explicitly modelled in the point-particle algorithm –
were not necessary for validation against the particle-resolved algorithm, at least for
integral statistics. To be clear, point particles do see disturbances created by other
point particles, but these disturbances do not correspond to physical disturbances that
could be compared pointwise to, for example, a Stokes flow around a sphere, in that
limit. The nature of the disturbance flow is entirely dictated by the magnitude of
the force and projection scheme used to transfer the Lagrangian force to the grid.
Guarantees about the nature of the force are only possible in the Stokes regime,
infinitely far from the particle, where the point-force solution is asymptotic to the
Stokes stream function (Batchelor 1967). Nevertheless, the numerical tests performed
by Horwitz & Mani (2016) suggest the contribution to the drag force experienced by
one particle given other particles placed at the Wigner–Seitz radius for this problem,
rs= 5dp, would be relatively small. Speculating, it is possible the effects of screening
are suppressed owing to the transient configuration of the particle field in a flow
which, though it induces a characteristic particle Reynolds number of O(1), has no
mean motion. Put another way, instantaneously in some regions of the flow, the
particles are behaving as a swarm and are experiencing drag enhancement consistent
with the observed increase in mean drag predicted by the studies that examined
flow past an array of spheres. In other parts of the suspension, the particles are
transiently isolated or only see a few neighbours, so that these particles experience
drag reduction consistent with the scaling of the two-particle studies. The apparent
contradiction of drag reduction versus drag enhancement for the two-particle based
analysis versus the studies that examined flow past an array of spheres is likely owing
to the difference in boundary conditions. In the former studies which consider two
spheres, the disturbance flow is zero at infinite distances. The array configurations
however employ periodic boundary conditions so that the disturbances do not decay
to zero at an infinite distance from the spheres. Regardless of how we interpret
‘boundary conditions’ for particle neighbours in the present simulations, both types of
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analysis suggest that for the present cases, the drag a particle experiences in isolation
dominates the change in drag owing to the presence of one or more neighbours.
However, while screening may be a second-order effect for accurate comparison of
particle and fluid energetics, the observed differences in the particle acceleration PDFs
suggest that particle screening may be more critical to accurately comparing these
distributions. At higher volume fractions than that considered in this study, it would
be especially prudent to directly model particle screening in point-particle simulation,
using for instance the Langevin dynamics-based model of Tenneti et al. (2016) or the
PIEP method (Akiki, Jackson & Balachandar 2017a; Akiki, Moore & Balachandar
2017b).

6. Conclusions

In this work, we performed a direct comparison of the PP-DNS and PR-DNS
methods for the problem of decaying particle-laden homogeneous isotropic turbulence.
We examined two cases, the first corresponds to low Stokes number (low mass
loading) analogous to the conditions studied in Subramaniam et al. (2014). For
this case, initializing particles with the local fluid velocity was found to be key in
validating the PP-DNS statistics against the PR-DNS. Two PP-DNS implementations
were considered. In each implementation, the particles were assumed to obey Stokes
drag, however in one implementation, the slip velocity was calculated with the local
disturbed fluid velocity (as has traditionally been done in the literature) and the
second implementation incorporated an estimate of the undisturbed fluid velocity.
In comparing fluid kinetic energy, dissipation rate, and particle kinetic energy, both
PP-DNS implementations showed excellent agreement compared with the PR-DNS.
The similarity in the prediction of the two PP-DNS models is attributed to the
relatively small Stokes number. In this regime, it is likely that particles will tend to
isotropically change their direction before a significant difference between the local
disturbed and undisturbed fluid velocity can develop.

Having successfully validated the PP-DNS against the PR-DNS for the low mass
loading case, we examined a more challenging problem by increasing the mass
loading of the system. Here, the suppression of the velocity mismatch in the initial
condition was not sufficient for the statistics obtained in the PP-DNS and PR-DNS
to agree. In this problem, the high Stokes number of the particles led to a relatively
high slip velocity compared to the previous case. The fluid dissipation increased
substantially over the unladen fluid owing to the additional work rate necessary
to slow down the particles. For this problem, the model form of acceleration and
its numerical implementation were both critical to validating the particle and fluid
statistics. The enhanced slip velocity (Reynolds number) of the particles meant that
the inertial contribution to drag was non-negligible. The Schiller–Naumann correlation
was adopted as a model for drag enhancement at finite Reynolds number. However,
it was also found that modelling the undisturbed fluid velocity was as critical to
successful validation as the choice of drag model. When the Schiller–Naumann
correlation was combined with an estimate for the undisturbed fluid velocity, particle
and fluid kinetic energy as well as the sources that create them showed excellent
agreement between the PR-DNS and PP-DNS simulations. Remarkably however, it
was found that point particles obeying Stokes drag computed using the undisturbed
fluid velocity implied more accurate statistics than did point particles obeying the
Schiller–Naumann correlation computed using the disturbed fluid velocity. Stokesian
point particles using the disturbed fluid velocity were the least accurate compared with
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the PR-DNS. The same trend was found when examining the one-time distribution
of particle acceleration events over the history of the decay. The acceleration PDFs
for SN corrected point particles at all times were in good agreement with the
acceleration PDFs from the PR-DNS. Stokes uncorrected particle acceleration PDFs
showed the lowest level of agreement compared with the particle acceleration events
predicted by the PR-DNS. Though the volume fraction of the system was relatively
dilute, previous studies suggested the effect of screening would be non-negligible
in this system. The reason that such effects did not seem to have an O(1) impact
on the present results is that the effect of screening may increase or decrease a
particle’s acceleration depending on the precise configuration of other particles in a
given particle’s neighbourhood. We suspect that these competing effects statistically
cancelled which is why the results of SN corrected scheme and those of the PR-DNS
showed good agreement.

The fact that a simple steady drag model for the particle acceleration was effective
in prediction of both energy and acceleration statistics suggests that the point-particle
model has predictive capability, and serves as a considerably less computationally
expensive methodology compared with PR-DNS. Still, the present study is limited to
a small region of parameter space. Specifically, the Reynolds number was relatively
low, Rλ0 ≈ 27, so it would be prudent to examine whether the present conclusions
hold at higher Reynolds number. The present work was also focused on the relatively
simple problem of decaying homogeneous turbulence; it would be interesting to
explore comparisons of this type in inhomogeneous and wall-bounded turbulent flows.
In addition, the Stokes number in this study was varied at constant particle size
while varying the density ratio. We believe the comparison between PP-DNS and
PR-DNS would have shown similar agreement if instead the Stokes number was
varied at constant density ratio by decreasing the particle size, since this would be
a regime where the PP-DNS becomes increasingly asymptotically valid. However,
the computational resources required to perform PR-DNS in that regime becomes
increasingly demanding. If instead, the Stokes number is increased at constant density
ratio by increasing the particle size, we feel the present observations, namely that
the appropriate drag model and incorporation of the undisturbed fluid velocity are
necessary for accurate comparison, would be germane in regimes where dp/η > 1.
However, with increasing particle size, it will be especially important to also consider
other contributions to the particle equation of motion in the point-particle simulations,
including added mass, history, fluid acceleration, and lift. Due to the low number
of particles in this study, we were not able to accurately extract more sensitive
quantities such as the particle radial distribution function. Horwitz & Mani (2018)
have shown that incorporation of the undisturbed fluid velocity can change predictions
of preferential concentration, so it would be of value to carry out future studies to
see how these multi-point quantities compare between PP-DNS and PR-DNS. More
studies which directly compare PP-DNS and PR-DNS should also be undertaken to
test the validity of the point-particle method in other flow regimes.
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Appendix A. Derivation of total energy equation for point-particle method
In this section, we derive the energy equations implied by the point-particle model

equations. Beginning with the particle momentum equation for the ith particle:

mp
dVi

dt
=Fi,pp. (A 1)

In (A 1), Fi,pp is the total force acting on particle i. Contracting (A 1) with the particle
velocity and summing over all particles yields:

mp
d
dt

1
Np

Np∑
i=1

1
2

Vi ·Vi =
1

Np

Np∑
i=1

Fi,pp ·Vi. (A 2)

Using the definition of particle kinetic energy k(p)
≡ (1/Np)

∑Np
i=1 (1/2)Vi ·Vi, dividing

through by particle mass and multiplying by ρ(p) and φ yields:

d
dt
φρ(p)k(p)

= ρ(p)
Np

πd3
p

6
V

1
Np

Np∑
i=1

Ai,pp ·Vi. (A 3)

In (A 3), Ai,pp is the acceleration of the ith particle. Simplifying the above yields:

d
dt
φρ(p)k(p)

=
1
V

Np∑
i=1

Fi,pp ·Vi =Π
(p)
pp , (A 4)

which is the expression given in (2.12).
Next we derive the fluid energy from the point-particle equations. Beginning with

the Navier–Stokes equations augmented by the point-particle force:

ρ( f ) ∂u( f )

∂t
+ ρ( f )

∇ · (u( f )u( f ))=−∇p+µ( f )
∇

2u( f )
−

1
Vcell

Np∑
i=1

Fi,ppP(δ(Xi − x)). (A 5)

Contracting (A 5) with the fluid velocity and integrating over the volume we have:

d
dt
ρ( f ) 1

V

∫
V

1
2

u( f )u( f ) dV =
1
V

∫
V
µ( f )u( f )

∇
2u( f ) dV

−
1
V

∫
V

1
Vcell

Np∑
i=1

u( f )
·Fi,ppP(δ(Xi − x)) dV. (A 6)

In the above equation, we have made use of the fact that convective and pressure
work terms can be placed in divergence form discretely, consistent with the staggered
formulation of the point-particle solver. Using the definition of fluid kinetic energy (in
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this case the mean fluid velocity is zero) k( f )
pp ≡ (1/V)

∫
V (1/2)u

( f )u( f ) dV , dissipation
rate −ε( f )

pp ≡ (1− φ)(1/V)
∫

V µ
( f )u( f )

∇
2u( f ) dV and the fact that the projection operator

P(·) is conservative, the point-particle fluid energy equation becomes:

d
dt
(1− φ)ρ( f )k( f )

pp =−ε
( f )
pp − (1− φ)

1
V

Np∑
i=1

u( f )(Xi) ·Fi,pp. (A 7)

The final term in (A 7) may be recognized as the fluid to particle interphase energy
exchange term (2.11). Combining (A 4) and (A 7), and using the definition of the
mixture energy, em

pp= (1−φ)ρ
( f )k( f )

pp +φρ
(p)k(p), the mixture energy equation for point

particles is:

de(m)pp

dt
=−ε( f )

pp +
1
V

Np∑
i=1

Fi,pp · (Vi − u( f )(Xi))+ φ
1
V

Np∑
i=1

u( f )(Xi) ·Fi,pp. (A 8)

The final term in (A 8) can be re-written as:

φ
1
V

Np∑
i=1

u( f )(Xi) ·Fi,pp = φ
mpNp

V

(
1

Np

) Np∑
i=1

u( f )
i ·Ai,pp = ρpφ

2
{u( f )

i ·Ai,pp}Np =O(φ2).

(A 9)
Similarly, the second term on the right-hand side of (A 8) can be written as:

1
V

Np∑
i=1

Fi,pp · (Vi − u( f )(Xi))= ρpφ{(Vi − u( f )
i ) ·Ai,pp}Np =O(φ). (A 10)

The previous analysis justifies the neglect of the final term in (A 8) when
reporting (3.14) and (3.15), which are written in the dilute limit. For completeness
however, all of the terms on the right-hand side of (A 8) were included when
comparing fluid dissipation rate in the PP-DNS to the PR-DNS.

Appendix B. Consideration of collisions in the point-particle method
Here we consider the effect of collisions on the predictions of the point-particle

method. We had originally neglected collisions owing to the low volume fraction
of the suspension. However, to establish a better comparison with the PR-DNS
simulation, we have re-run the St = 100 set-up for both the SN uncorrected and SN
corrected point-particle models including the effects of collision. We have incorporated
the same soft-sphere collision model into the point-particle code as was used in the
particle-resolved code. To avoid some issues related to numerical stiffness since the
spring constant used in the PR-DNS was very large and the PP-DNS simulations
use explicit time stepping, we have reduced the spring constant in the PP-DNS. The
spring constant used in the PP-DNS simulations was chosen to yield a collision time
much smaller than all fluid time scales so that while the dimensional collision time
is different between the PP-DNS and the PR-DNS, there should be negligible effect
of the collision time on the dynamics of the particles during non-collision events.

In figure 5, we show that incorporation of collisions shows no significant difference
in the prediction of the point-particle model. No discernible change in the dissipation
rate predicted by the SN corrected scheme is evident when collisions are added, as
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FIGURE 5. (Colour online) Effect of collisions on (a) dissipation rate, and (b) particle
acceleration PDF at tε( f )

0 /k( f )
0 = 2.70.

|ap| σ|ap|

SN corrected, collisions 0.048 0.024
SN corrected 0.049 0.024
SN uncorrected, collisions 0.032 0.017
SN uncorrected 0.033 0.017

TABLE 3. Effect of collisions on mean and standard deviation of particle acceleration for
PP-DNS for St0 = 100, tε( f )

0 /k( f )
0 = 2.70. These quantities are normalized by the initial

Kolmogorov velocity scale uη and time scale τη.

shown in figure 5(a). In figure 5(b), we also see that collisions show no significant
effect on the distribution of acceleration events for either point-particle scheme.
In examining table 3, the mean and standard deviation of particle acceleration are
essentially unchanged whether or not collisions are incorporated. These results suggest
the assumptions of neglecting collisions in the point-particle simulations was justified
for the present case. Furthermore, these observations provide further evidence that the
differences between the statistics of PP-DNS simulations and PR-DNS simulations
are primarily owing to the choice of drag formulation and the modelling of the
undisturbed fluid velocity. In other regimes, it is expected that collisions could
play a central role in comparison between PR-DNS and PP-DNS methodologies.
The collision model presented here is non-dissipative, so the effect on energetics is
expected to be negligible. In addition, the low volume fraction of the system kept
the number of collisions relatively low. For illustration, both point-particle methods
predicted each particle experienced an average of approximately one collision over
the course of the simulation. In other words, although most, if not all, of the particle
population collides at some point, each particle spends most of its time in free flight.

Appendix C. Effect of grid resolution on PR-DNS results
The particle-resolved direct numerical simulation (PR-DNS) approach in this study

is based on PUReIBM, which has been shown to be convergent and capable of
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FIGURE 6. (Colour online) Convergence of the mean drag force on a particle normalized
by the Stokes drag force FSt= 3πdp µ

( f )(1−φ) |〈up〉− 〈uf 〉| with increasing grid resolution
in a simple cubic configuration at φ = 0.001 for different mean-slip Reynolds numbers
(Rem = dp (1− φ) |〈up〉 − 〈uf 〉|/ν

( f )).

reproducing established analytical and numerical results (Tenneti et al. 2011, 2013;
Mehrabadi et al. 2015; Sun et al. 2015; Mehrabadi et al. 2016a). Nevertheless, in
the aforementioned references, the simulations have been performed for much higher
solid-phase volume fractions (φ > 0.1) than what has been considered in the present
study which is φ = 0.001. To investigate the accuracy of the grid resolution for our
PR-DNS calculations, we first computed the local particle Reynolds number for each
particle in our PR-DNS for an early instance of the simulation, and then generated
the PDF of the local particle Reynolds number. This quantification showed that the
mean and maximum particle Reynolds number were both O(1). Correspondingly,
we set up a convergence analysis for a simple cubic configuration with a range
of mean-slip Reynolds numbers (0.01 6 Rem 6 20) and particle diameter resolution
Dm = dp/1x (10 6 Dm 6 30). As shown in figure 6, the drag force on the particle is
almost invariant with respect to the grid resolution at such a low solid-phase volume
fraction. Consequently, the chosen grid resolution (dp = 121x) is adequate for the
PR-DNS calculations in the current study.
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